Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Diagnostics (Basel) ; 12(3)2022 Feb 27.
Article in English | MEDLINE | ID: covidwho-1715175

ABSTRACT

BACKGROUND: Coronavirus 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), has created a tremendous economic and medical burden. The prevalence and prognostic value of SARS-CoV-2-induced kidney impairment remain controversial. The current study aimed to provide additional evidence on the incidence of acute kidney injury (AKI) in COVID-19 patients and propose the use of urinalysis as a tool for screening kidney impairment. METHODS: 178 patients with confirmed COVID-19 were enrolled in this retrospective cohort study. The laboratory examinations included routine blood tests, blood biochemical analyses (liver function, renal function, lipids, and glucose), blood coagulation index, lymphocyte subset and cytokine analysis, urine routine test, C-reactive protein, erythrocyte sedimentation, and serum ferritin. RESULTS: No patient exhibited a rise in serum creatinine or Cystatin C and occurrence of AKI, and only 2.8% of patients were recorded with an elevated level of blood urea nitrogen among all cases. On the contrary, 54.2% of patients who underwent routine urine testing presented with an abnormal urinalysis as featured by proteinuria, hematuria, and leucocyturia. CONCLUSIONS: Kidney impairment is prevalent among COVID-19 patients, with an abnormal urinalysis as a clinical manifestation, implying that a routine urine test is a stronger indication of prospective kidney complication than a blood biochemistry test.

2.
Int J Infect Dis ; 116: 258-267, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1693397

ABSTRACT

OBJECTIVE: The mortality rate for critically ill COVID-19 cases was more than 80%. Nonetheless, research about the effect of common respiratory diseases on critically ill COVID-19 expression and outcomes is scarce. DESIGN: We performed proteomic analyses on airway mucus obtained by bronchoscopy from patients with severe COVID-19, or induced sputum from patients with chronic obstructive pulmonary disease (COPD), asthma, and healthy controls. RESULTS: Of the total identified and quantified proteins, 445 differentially expressed proteins (DEPs) were found in different comparison groups. In comparison with COPD, asthma, and controls, 11 proteins were uniquely present in COVID-19 patients. Apart from DEPs associated with COPD versus controls and asthma versus controls, there was a total of 59 DEPs specific to COVID-19 patients. Finally, the findings revealed that there were 8 overlapping proteins in COVID-19 patients, including C9, FGB, FGG, PRTN3, HBB, HBA1, IGLV3-19, and COTL1. Functional analyses revealed that most of them were associated with complement and coagulation cascades, platelet activation, or iron metabolism, and anemia-related pathways. CONCLUSIONS: This study provides fundamental data for identifying COVID-19-specific proteomic changes in comparison with COPD and asthma, which may suggest molecular targets for specialized therapy.


Subject(s)
Asthma , COVID-19 , Pulmonary Disease, Chronic Obstructive , Critical Illness , Humans , Microfilament Proteins/metabolism , Proteomics , SARS-CoV-2 , Sputum
3.
Front Immunol ; 12: 782731, 2021.
Article in English | MEDLINE | ID: covidwho-1581325

ABSTRACT

The SARS-CoV-2 and its variants are still hitting the world. Ever since the outbreak, neurological involvements as headache, ageusia, and anosmia in COVID-19 patients have been emphasized and reported. But the pathogenesis of these new-onset neurological manifestations in COVID-19 patients is still obscure and controversial. As difficulty always lay in the diagnosis of neurological infection, current reports to validate the presence of SARS-CoV-2 in cerebrospinal fluid (CSF) almost relied on the basic methods and warranted improvement. Here we reported a case series of 8 patients with prominent new-onset neurological manifestations, who were screened out from a patch of 304 COVID-19 confirmed patients. Next-generation sequencing (NGS) and proteomics were conducted in the simultaneously obtained CSF and serum samples of the selected patients, with three non-COVID-19 patients with matched demographic features used as the controls for proteomic analysis. SARS-CoV-2 RNA was detected in the CSF of four COVID-19 patients and was suspicious in the rest four remaining patients by NGS, but was negative in all serum samples. Proteomic analysis revealed that 185 and 59 proteins were differentially expressed in CSF and serum samples, respectively, and that only 20 proteins were shared, indicating that the proteomic changes in CSF were highly specific. Further proteomic annotation highlighted the involvement of complement system, PI3K-Akt signaling pathway, enhanced cellular interaction, and macrophages in the CSF proteomic alterations. This study, equipped with NGS and proteomics, reported a high detection rate of SARS-CoV-2 in the CSF of COVID-19 patients and the proteomic alteration of CSF, which would provide insights into understanding the pathological mechanism of SARS-CoV-2 CNS infection.


Subject(s)
COVID-19/cerebrospinal fluid , Central Nervous System Diseases/virology , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/virology , RNA, Viral/cerebrospinal fluid , Adult , Aged , Aged, 80 and over , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Proteomics , SARS-CoV-2 , Sequence Analysis, RNA
4.
Clin Respir J ; 15(8): 915-924, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1238374

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emerging, rapidly evolving pandemic, hypertension is one of the most common co-existing chronic conditions and a risk factor for mortality. Nearly one-third of the adult population is hypertensive worldwide, it is urgent to identify the factors that determine the clinical course and outcomes of COVID-19 patients with hypertension. METHODS AND RESULTS: 148 COVID-19 patients with pre-existing hypertension with clarified outcomes (discharge or deceased) from a national cohort in China were included in this study, of whom 103 were discharged and 45 died in hospital. Multivariate regression showed higher odds of in-hospital death associated with high-sensitivity cardiac troponin (hs-cTn) > 28 pg/ml (hazard ratio [HR]: 3.27, 95% confidence interval [CI]: 1.55-6.91) and interleukin-6 (IL-6) > 7 pg/ml (HR: 3.63, 95% CI:1.54-8.55) at admission. Patients with uncontrolled blood pressure (BP) (n = 52) which were defined as systolic BP ≥140 mm Hg or diastolic BP ≥90 mm Hg for more than once (≥2 times) during hospitalization, were more likely to have ICU admission (p = 0.037), invasive mechanical ventilation (p = 0.028), and renal injury (p = 0.005). A stricter BP control with the threshold of 130/80 mm Hg was associated with lower mortality. Treatment with renin-angiotensin-aldosterone system (RAAS) suppressors, including angiotensin-converting enzyme (ACE) inhibitors, angiotensin II receptor blockers (ARB), and spironolactone, was associated with a lower rate of ICU admission compared to other types of anti-hypertensive medications (8 (22.9%) vs. 25 (43.1%), p = 0.048). CONCLUSION: Among COVID-19 patients with pre-existing hypertension, elevated hs-cTn and IL-6 could help clinicians to identify patients with fatal outcomes at an early stage, blood pressure control is associated with better clinical outcomes, and RAAS suppressors do not increase mortality and may decrease the need for ICU admission.


Subject(s)
COVID-19 , Hypertension , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , China/epidemiology , Hospital Mortality , Humans , Hypertension/epidemiology , Retrospective Studies , SARS-CoV-2
5.
Front Immunol ; 11: 580237, 2020.
Article in English | MEDLINE | ID: covidwho-1116681

ABSTRACT

Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induced Coronavirus Disease 2019 (COVID-19) has posed a global threat to public health. The immune system is crucial in defending and eliminating the virus and infected cells. However, immune dysregulation may result in the rapid progression of COVID-19. Here, we evaluated the subsets, phenotypic and functional characteristics of natural killer (NK) and T cells in patients with COVID-19 and their associations with disease severity. Methods: Demographic and clinical data of COVID-19 patients enrolled in Wuhan Union Hospital from February 25 to February 27, 2020, were collected and analyzed. The phenotypic and functional characteristics of NK cells and T cells subsets in circulating blood and serum levels of cytokines were analyzed via flow cytometry. Then the LASSO logistic regression model was employed to predict risk factors for the severity of COVID-19. Results: The counts and percentages of NK cells, CD4+ T cells, CD8+ T cells and NKT cells were significantly reduced in patients with severe symptoms. The cytotoxic CD3-CD56dimCD16+ cell population significantly decreased, while the CD3-CD56dimCD16- part significantly increased in severe COVID-19 patients. More importantly, elevated expression of regulatory molecules, such as CD244 and programmed death-1 (PD-1), on NK cells and T cells, as well as decreased serum cytotoxic effector molecules including perforin and granzyme A, were detected in patients with COVID-19. The serum IL-6, IL-10, and TNF-α were significantly increased in severe patients. Moreover, the CD3-CD56dimCD16- cells were screened out as an influential factor in severe cases by LASSO logistic regression. Conclusions: The functional exhaustion and other subset alteration of NK and T cells may contribute to the progression and improve the prognosis of COVID-19. Surveillance of lymphocyte subsets may in the future enable early screening for signs of critical illness and understanding the pathogenesis of this disease.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , COVID-19/blood , Killer Cells, Natural/cytology , SARS-CoV-2/physiology , Adult , Aged , CD8-Positive T-Lymphocytes/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , China/epidemiology , Female , Flow Cytometry , Humans , Killer Cells, Natural/immunology , Leukocyte Count , Male , Middle Aged , Pandemics , Prognosis , SARS-CoV-2/genetics , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology
6.
Life Sci ; 269: 119046, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1030918

ABSTRACT

BACKGROUND: The pandemic of the coronavirus disease 2019 (COVID-19) has brought a global public health crisis. However, the pathogenesis underlying COVID-19 are barely understood. METHODS: In this study, we performed proteomic analyses of airway mucus obtained by bronchoscopy from severe COVID-19 patients. In total, 2351 and 2073 proteins were identified and quantified in COVID-19 patients and healthy controls, respectively. RESULTS: Among them, 92 differentiated expressed proteins (DEPs) (46 up-regulated and 46 down-regulated) were found with a fold change >1.5 or <0.67 and a p-value <0.05, and 375 proteins were uniquely present in airway mucus from COVID-19 patients. Pathway and network enrichment analyses revealed that the 92 DEPs were mostly associated with metabolic, complement and coagulation cascades, lysosome, and cholesterol metabolism pathways, and the 375 COVID-19 only proteins were mainly enriched in amino acid degradation (Valine, Leucine and Isoleucine degradation), amino acid metabolism (beta-Alanine, Tryptophan, Cysteine and Methionine metabolism), oxidative phosphorylation, phagosome, and cholesterol metabolism pathways. CONCLUSIONS: This study aims to provide fundamental data for elucidating proteomic changes of COVID-19, which may implicate further investigation of molecular targets directing at specific therapy.


Subject(s)
Amino Acids/metabolism , COVID-19/physiopathology , Mucus/virology , Proteins/metabolism , Aged , Bronchoscopy , Case-Control Studies , Cholesterol/metabolism , Critical Illness , Female , Humans , Male , Middle Aged , Proteomics , Severity of Illness Index
7.
Int J Obes (Lond) ; 44(12): 2479-2485, 2020 12.
Article in English | MEDLINE | ID: covidwho-759569

ABSTRACT

BACKGROUND: Since December 2019, novel coronavirus (SARS-CoV-2)-induced pneumonia (COVID-19) occurred in Wuhan, and rapidly spread throughout China. COVID-19 patients demonstrated significantly different outcomes in clinic. We aimed to figure out whether obesity is a risk factor influencing the progression and prognosis of COVID-19. METHODS: 95 patients with COVID-19 were divided into obesity group and non-obesity group according to their body mass index (BMI). The demographic data, clinical characteristics, laboratory examination, and chest computed tomography (CT) were collected, analyzed and compared between two groups. RESULTS: Our data showed that COVID-19 patients with obesity had more underlying diseases and higher mortality rate compared to those without obesity. Furthermore, patients with obesity also demonstrated more severe pathological change in lung and higher blood lymphocytes, triglycerides, IL-6, CRP, cystatin C, alanine aminotransferase (ALT), erythrocyte sedimentation rate (ESR), which may greatly influence disease progression and poor prognosis of COVID-19. CONCLUSIONS: It suggest that obesity contributes to clinical manifestations and may influence the progression and prognosis of COVID-19 and it is considered as a potential risk factor of the prognosis of COVID-19. Special medical care and appropriate intervention should be performed in obesity patients with COVID-19 during hospitalization and later clinical follow-up, especially for those with additional other comorbidities.


Subject(s)
COVID-19/physiopathology , Obesity/virology , COVID-19/blood , COVID-19/epidemiology , COVID-19/pathology , Cytokines/blood , Humans , Lung/diagnostic imaging , Lung/pathology , Obesity/blood , Obesity/epidemiology , Obesity/physiopathology , Pandemics , Risk Factors , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed
8.
J Med Virol ; 92(11): 2675-2683, 2020 11.
Article in English | MEDLINE | ID: covidwho-505549

ABSTRACT

The outbreak of COVID-19, caused by severe acute respiratory syndrome coronavirus 2, started in December 2019, Wuhan, China. We aimed to figure out the time-point and duration of using antiviral drugs for receiving the maximal effects in patients with COVID-19. In this study, we enrolled 129 confirmed COVID-19 mild to moderate patients who had been treated with antiviral drugs during their hospitalization in Wuhan Union Hospital China. The patients were divided into an early antiviral treatment group and late antiviral treatment group. The demographic data, laboratory tests, the virus clearance time, chest computed tomography scans, and so forth were extracted, calculated, and compared between two groups. Our data showed that the median time from illness onset to initiation of antiviral treatment was 6 days in all patients. The group with early antiviral treatment demonstrated 7 days shorter in the virus clearance time when compared to the group with late antiviral treatment. After virus clearance, the group with early antiviral treatment showed milder illness than the group with late antiviral treatment. Early antiviral treatment could effectively shorten the virus clearance time, and prevent the rapid progression of COVID-19. Therefore, the COVID-19 patients should receive combined therapies with antiviral treatment at an early stage.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Viral Load/drug effects , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , China , Comorbidity , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Retrospective Studies , Thorax/diagnostic imaging , Time Factors , Tomography, X-Ray Computed , Young Adult
9.
Transbound Emerg Dis ; 67(6): 2823-2829, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-436991

ABSTRACT

An outbreak of pneumonia caused by a novel coronavirus (COVID-19) began in Wuhan, China in December 2019 and quickly spread throughout the country and world. An efficient and convenient method based on clinical characteristics was needed to evaluate the potential deterioration in patients. We aimed to develop a simple and practical risk scoring system to predict the severity of COVID-19 patients on admission. We retrospectively investigated the clinical information of confirmed COVID-19 patients from 10 February 2020 to 29 February 2020 in Wuhan Union Hospital. Predictors of severity were identified by univariate and multivariate logistic regression analysis. A total of 147 patients with confirmed SARS-CoV-2 infection were grouped into non-severe (94 patients) and severe (53 patients) groups. We found that an increased level of white blood cells (WBC), neutrophils, D-dimer, fibrinogen (FIB), IL-6, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), alanine aminotransferase (ALT), aspartate aminotransferase (AST), α-hydroxybutyrate dehydrogenase (HBDH), serum amyloid A (SAA) and a decreased level of lymphocytes were important risk factors associated with severity. Furthermore, three variables were used to formulate a clinical risk scoring system named COVID-19 index = 3 × D-dimer (µg/L) + 2 × lgESR (mm/hr) - 4 × lymphocyte (×109 /L) + 8. The area under the receiver operating characteristic (ROC) curve was 0.843 (95% CI, 0.771-0.914). We propose an effective scoring system to predict the severity of COVID-19 patients. This simple prediction model may provide healthcare workers with a practical method and could positively impact decision-making with regard to deteriorating patients.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/physiology , Severity of Illness Index , Adult , Aged , COVID-19/virology , China/epidemiology , Female , Humans , Male , Middle Aged , Models, Theoretical , Retrospective Studies , Risk Factors
10.
Nutr Metab Cardiovasc Dis ; 30(7): 1061-1067, 2020 06 25.
Article in English | MEDLINE | ID: covidwho-71938

ABSTRACT

BACKGROUND AND AIM: A novel coronavirus severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) caused pneumonia, Coronavirus Disease 2019 (COVID-19), broke out in Wuhan, China in December 2019, and spread all over the world. Patients with COVID-19 showed huge differences in the hospital stay, progression, and prognosis. As reported, the comorbidities may play an important role in COVID-19. Here, we aim to address the role of cardiovascular disease (CVD) in the progression and prognosis of COVID-19. METHODS AND RESULTS: Eighty-three confirmed COVID-19 patients were divided into CVD (n = 42) and non-CVD (n = 41) group according to their medical history. Medical records including demographic data, medical history, clinical characteristics, laboratory examinations, chest computed tomography (CT), and treatment measures were collected, analyzed, and compared between the two groups. COVID-19 patients with CVD showed (1) more severe pathological changes in the lungs, (2) elevated injury-related enzymes including α-hydroxybutyrate dehydrogenase (HDBH), lactic dehydrogenase (LDH), γ-glutamyltransferase (GGT), creatine kinase (CK), and alanine aminotransferase (ALT), (3) significantly increased uncontrolled inflammation related markers, such as c-reactive protein (CRP), interleukin (IL)-6, serum ferritin, erythrocyte sedimentation rate (ESR), and serum amyloid A (SAA), (4) serious hypercoagulable status reflected by increased D-dimer and serum fibrinogen (FIB), and (5) higher mortality, compared to COVID-19 patients without CVD. CONCLUSIONS: Our data indicated that CVD is a strong risk factor for rapid progression and bad prognosis of COVID-19. More intensive medical care should be applied to patients with CVD to prevent rapid deterioration of the disease.


Subject(s)
Betacoronavirus , Cardiovascular Diseases/epidemiology , Cause of Death , Coronavirus Infections/epidemiology , Disease Outbreaks/statistics & numerical data , Disease Progression , Pneumonia, Viral/epidemiology , Adult , Aged , Biomarkers/blood , Blood Chemical Analysis , C-Reactive Protein/metabolism , COVID-19 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/therapy , China/epidemiology , Cohort Studies , Comorbidity , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Databases, Factual , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Reference Values , Retrospective Studies , SARS-CoV-2 , Survival Analysis , Tomography, X-Ray Computed/methods
12.
Diabetes Metab Res Rev ; : e3319, 2020 Mar 31.
Article in English | MEDLINE | ID: covidwho-20583

ABSTRACT

BACKGOUND: To figure out whether diabetes is a risk factor influencing the progression and prognosis of 2019 novel coronavirus disease (COVID-19). METHODS: A total of 174 consecutive patients confirmed with COVID-19 were studied. Demographic data, medical history, symptoms and signs, laboratory findings, chest computed tomography (CT) as well the treatment measures were collected and analysed. RESULTS: We found that COVID-19 patients without other comorbidities but with diabetes (n = 24) were at higher risk of severe pneumonia, release of tissue injury-related enzymes, excessive uncontrolled inflammation responses and hypercoagulable state associated with dysregulation of glucose metabolism. Furthermore, serum levels of inflammation-related biomarkers such as IL-6, C-reactive protein, serum ferritin and coagulation index, D-dimer, were significantly higher (P < .01) in diabetic patients compared with those without, suggesting that patients with diabetes are more susceptible to an inflammatory storm eventually leading to rapid deterioration of COVID-19. CONCLUSIONS: Our data support the notion that diabetes should be considered as a risk factor for a rapid progression and bad prognosis of COVID-19. More intensive attention should be paid to patients with diabetes, in case of rapid deterioration.

SELECTION OF CITATIONS
SEARCH DETAIL